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ABSTRACT 

We explore the use of real fermionization as a test case for understanding how specific 

features of phenomenological interest in the low-energy effective superpotential are real- 

ized in exact solutions to heterotic superstring theory. We present pedagogic examples of 

models which realize SO(10) as a level two current algebra on the world-sheet, and discuss 

in general how higher level current algebras can be realized in the tensor product of simple 

constituent conformal field theories. We describe formal developments necessary to com- 

pute couplings in models built using real fermionization. This allows us to isolate cases of 

spin structures where the standard prescription for real fermionization breaks down. 
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1. Introduction 

It is importaut io string theory to develop the dict,ionary l,hat trauslates 

between four dimensional spacetime physics and the world-sheet properties of 

the string vacuum [1][2]. This will enable us to understand how specific phe- 

nomenological properties of possible interest in the low energy effective field 

theory are realized in superstring unification [3][4][5]. Much of the work to date 

in superstring phenomenology has focussed on the (NR, N~)=(2,2) compact- 

ifications [S] of the ten-dimensional Es x Ei heterotic superstring 171. These 

sobltions have similar low-energy implications: the three generations of the 

miuimal supersymmetric standard model are embedded in the 27, Ti repre- 

sentations of ES, a hidden sector is embedded in EA, and at generic points in 

the moduli space there are a large number of massless scalar superfields with 

exactly flat scalar potentials. Since many of the consequences for low-energy 

physics depend on an understanding of the non-perturbative dynamics which 

lifts this vacuum degeneracy, it is important to understand the nature of the 

moduli space [8] and the phenomenological implications of moduli fields [9][10]. 

The larger class of (2,0) vacua [9], where the restriction to ground states 

with (2.0) world-sheet supersymmetry is motivated by the requirement of N=l 

spacetime supersymmet$[l], is interesting from the viewpoint of both the par- 

ticle spectrum and the moduli spaces. There are new options for the embedding 

of the low-euergy gauge group, the chiral matter and Eggs representatious, and 

for realizing dynamical supersymmetry breaking. The phenomenology of exact 

(2,0) solutious has however remained largely unexplored except for the sim- 

plest abelian orbifold compactiticatious [11](12][13], a subset of which have au 

equivaleut free ferruiouic realization [14](15]. Th e reason for this is in part tech- 

nical difficulty. Rwthermore, given the very large number of possibilities for the 

underlying couformal field theories from which one could imagine constructing 

cousistent ground states of string theory, it is difficult to know which solutions 

are likely to yield new physical insight. 

An interestiug counterpoirrt to the proliferation problem is the fact that 

it harj proven surprisiugly difficult to Iiud any solutions with a massless par- 

ticle spectrum such that the gauge coupliugs unify perturbatively below or at 
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the string scale ]16][17], without making assumptions about string scale dy- 

namics [18]]19][20](21]. It f IS o course au open question whether any classical 

ground state is relevant to the true quantum grouud state of string theory. 

T. Banks and M. Dine have suggested 1221 that the quantum ground state of 

string theory, even if it is strongly coupled, is likely to share certain properties 

of a nearby classical ground state, namely, its masstess spectrum and tree-level 

superpotential. 

The string consisteucy conditions of modular invariance and world-sheet 

supersymmetry are extremely restrictive constraints on the spectrum. This is 

particularly evident in the ultraviolet finiteness of the one-loop vacuum ampti- 

tude [23] which is achieved, in a supersymmetric vacuum, through cancellations 

among several different twisted sectors [24]. In recent work 1251, we have used 

ndfermionizafion' (27][28][18] t o understaud how specific features of interest 

in the massless spectrum and tree-level couplings of the tow-energy effective field 

theory are realized in exact solutions to string theory. Our starting point is the 

low-energy effective field theory. We will apply our knowledge of conformal field 

theory to find consistent ground states of string theory which embed spacetime 

features of possible phenomenologicd interest. Our preliminary results suggest 

many intriguing possibilities for pheuomenology that are not present in either 

the (2,2) solutions or the known (2.0) orbifotd compactifications. Some pre- 

liminary results have also been obtained by G. Cleaver 1291. L. Ibanez and 

collaborators 1301 have recently begun a similar study of the phenomenological 

implications of higher level current algebras within the orbifold construction. 

One of our goals is to make contact between string theory and more conven- 

tional field theoretic uuification models. There are many indications that such 

a cross-fertilizatiou of ideas would be fruitful. In the coming years the detailed 

exploration of the electroweak scale and the neutrino sector is likely to yield ad- 

ditional clues about short-distance physics besides the pretiminaiy evidence for , 

’ We use the expression ‘real fermionizetion” to distinguish tbia approach from free 

fermionicformulations [14)[151(26/ h‘ h w IC assume a realizationof the interoral conformal 

field theory io either Weyt or lsing fermions, but have no vnpired Majorma-Weyl 

fermions. 

2 



gauge coupling unification. In addition, increasingly accurate determinations 

of the parameters of the Standard Model will provide tighter constraints on 

unification schemes. The motivation for string theory is rooted in the success- 

ful unification of parity violating gauge interactions, quantum mechanics, and 

fgravity [3J[4J[5]., It is therefore important to establish to what extent the low- 

energy particle physics consequences of string theory are robust. It is equally 

important to extract possible qualitative guidance and insights for unification 

model builders by requiring string consistency of the effective field theory at 

the unification scale. 

Supersymmetric grand unification models [31] suggest a picture in which 

radiative electroweak symmetry breaking and the large top quark mass are gen- 

erated from a GUT-scale effective superpotential with a single third generation 

Ynkawa coupling [32]. The distinct hierarchies in the pattern of fermion masses 

and mixings at the electrowe& scale may he generated, in part, by higher di- 

mension operators in the effective superpotential 1331. The recent results of 

Anderson, Dimoponlos, Hall, Raby, and Starkman 1341 illustrate that the pres- 

ence of a small number of higher dimension operators in the GUT-scale effective 

superpotential may be adequate to generate the observed masses and mixings. 

These higher dimension operators 1341 are suppressed by powers of MO over 

Mx, where M~=lO” GeV, and A4x is another superheavy mass scale ?zlO” 

GeV. Restrictive flavor-sensitive selection rules are required in such scenarios 

to eliminate unwanted higher dimension operators and Ynkawa couplings from 

the superpotential. Even more restrictive selection rules will be necessary in 

order to generate GUT scale masses for the triplet Higgs fields while keeping 

the supersymmetric Standard Model Higgs fields light [35][36]. Such restrictive 

symmetries appear unnatural from the point of view of an effective field theory. 

It is well-known in a general sense that string theory can provide such selection 

rules [37]. Less well-known is the possibility of realizing higher level current 

algebras in string theory to produce models which resemble conventional snper- 

symmetric GUTS [26][38][18]. String models which realize higher level current 

algebras are also relevant to recent ideas about supersymmetric textures which 

do not invoke GUTS [39], 
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Finding explicit solutions to string theory that realize the required massless 

spectrum and selection rules of such mass matrix models will both provide gnid- 

ante to model builders [40] and eventually give deeper insight into the origin of 

fermion masses and mixings. It should be noted that unification in the context 

of super&ring theory has broader significance than the unification of the gauge 

couplings and (or) Ynkawa couplings. The dynamical supersymmetry breaking 

sector, and a mechanism for feeding supersymmetry breaking to the low-energy 

matter, must he built into any consistent solution to string theory. Thus, string 

consistency is a powerful guiding principle in building complete supersymmetric 

models, which do not merely parametrize the weak scale effective Lryrangi~ 

hut which also specify the origin of the soft supersymmetry breaking param- 

eters. This is true quite independent of the specific assumptions made about 

the scale (or hierarchy of scales) for gauge coupling unification, or of the origin 

of supersymmetry breaking. In particular, low energy supersymmetry break- 

ing models 141) are not incompatible with our current understanding of the 

restrictions on the spectrum and superpotential placed by string consistency. 

We have emphasized the importance of understanding the world-sheet ori- 

gin of the spectrum and tree-level couplings of the effective field theory derived 

from string theory. The spacetime symmetries of string theory are a conse- 

quence of holomorphic and anti-holornorphic operator algebras on the world- 

sheet. Familiar examples are the (2,0) su p erconformal algebra responsible for 

N=l spacetime supersymmetry and the left-moving current algebras respon- 

sible for gauge symmetry. Less familiar examples are discrete symmetries in 

the effective field theory. We have little understanding of the world-sheet con- 

straints that determine the content of the spectrum, except in the simplest 

hosonic lattice compactifications. We will be particularly interested in the 

spacetime implications of what we will call discrele holomorphic operator alge- 

bras on the world-sheet.2 Since the chiral matter superfields transform under 

We will refer to the operator algebra of a conformal field theory with no spin one 

primary fields. or currents, as discrete. Notice that the central charge need not be 

less than one. In some cases this may be a coeet algebra. 
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both the rurrcot algebra sod the discrete operator algebra, there arc selection 

rules on the superpotent~ial ronplings which do not have their origin in gauge 

invariance. Such holomorlrhic discrete operator algebras appear to he a neces- 

sary ingredient of the world-sheet description of vacua with lower rank gauge 

symmetry and fewer moduli fields 1251. 

Solutions constructed via real fermionization, or via the natural generdiza- 

tion to constituent conformal field theories with central charge c< 1, are heterotic 

string ground states with four dimensional Lore& invariance.5 The spectrum 

and tree-level couplings of the low energy effective field theory are completely 

specified by the realization in rational conformal field theories. The internal 

target space geometries described by such solutions are likely to correspond to 

asymmetric, and possibly non-abelian, orhifold compactifications [12][42]. An 

important open problem is to understand the nature of their modnli spaces. 

Ree fermionization is one of the oldest techniques known to string the- 

orists and is the basis for the Ramond-Neveu-Schwarz formulation of the su- 

perstring [43][24][5]. The use of generalized GSO projections 1241 to construct 

new solutions to string theory, given a consistent solntion, was introduced in 

the context of the ten dimensional heterotic superstring in [44][45](46]. The 

ten dimensional ground states include a (non-supersymmetric) solution where 

the gauge symmetry is realized at level two 1461. In [14][15] this technique 

was applied to construct ground states with four dimensional Lorentz invari- 

ance. The fermionic formulation is based on the notion of current algebras and 

free fermionic representation theory [43][47](48]. A comprehensive discussion 

of noa-reeormalizable tree-level superpotential couplings can he found in 1261. 

Methods for analysing modnli dependence are given in [49][18][50], but these 

require further development. 

A number of models of phenomenological interest have been constructed 

using free fermionization [51][20][21]. Th ese models contain three generations 

’ “Heterotic” refers to the construction of the four dimensional solutions; it is not 

necessarily the care that these solutions possess a large-radius limit which recovers 

the ten dimensional heterotic superstriug. 
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of light, rhiral ferodoos nod gauge groups like SU(3) xSU( 2) x U( I) or “Bippecl” 

SU(5), realized hy Weyl fermionson the warh-sheet as current algehraa at level 

one. The snperpotrotial of the resulting low energy effective field theory haJ 

heen computed for these models, using the techniques described in 1261. One 

then discovers interesting &war-sensitive selection rules which restrict Ynlra~a 

couplings. The rank of the full gauge group (including a hidden sector) is 

reduced in these models by the introduction of Ising fermions. However these 

models do not contain any unpaired Majorana-Weyl fermions, which we call real 

fermions.’ Red fcrmionization enables us to realize current algebras at higher 

level, which in turn allows the appearance of adjoint Riggs in the massless 

spectrum together with many other new features [28]. We thus aim to exploit 

the techniques and snccesses of 151][20][21][26] while exploring a more general 

construction. 

A non-trivial extension of these techniques is required when the underly- 

ing conformal field theory includes real fermions. The source of the difficulty is 

phase ambiguities in the explicit definition of the GSO projections and higher 

loop modular transformations for the real fermion conformal field theory. These 

phases play a crucial role in determining the massless spectrum and tree level 

couplings of the resulting models. A first attempt at resolving these ambign- 

ities was made in [27]. We will fill in the gaps in that analysis by developing 

additional tree-level checks for string consistency, besides the requirement of 

modular invariance of the one-loop vacnnm amplitude. 

The outline of this paper is as follows. In section 2 we review the well- 

known correspondence between gauge symmetry in spacetime and current alge- 

bras on the world-sheet [7]. This introduces the notion of world-sheet constraint 

algebras underlying the properties of the low energy effective field theory. In 

’ Properly speakiug Ising fermioos, which aye right-left pairs of Majorana-Weyl 

fermions, rare also real fermions. However it is very convenient for our amdysim to 

let “real” denote only unpaired fermions, sod identify [sing fermions separately. We 

hope that this usage does not cause confusion with respect to references [2Sl and 1271, 

where “real fermions” inclad~ lsing fermions. 
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section 3 we explain in general how a higher level current algebra can be real- 

ized in the tensor product of corulituent conformal field theories. We illustrate 

this with a toy model. Ree fermion conformed field theories that embed both 

the gauge bosons and the chiral superfields transforming under such a current 

algebra, can be built into a consistent solution to string theory by using the real 

fcrmionization prescription of 1271. We explain how this works in the pedagogic 

discussion in section 4, presenting two examples with distinct fermionic embed- 

dings of SO( 10). All of the results in this section were obtained with the use of 

a symbolic manipulation package developed by us 152). In section 5 we address 

some of the formal developments necessary to understand real fermionization 

at a more fundamental level than the prescription of 1271. We use Verlinde’s 

theorem [53] to relate the tree-level fusion algebra to the one-loop spin strnc- 

ture blocks in a way which allows unambiguous computation of the tree level 

carrelators for real fermions. Combined with the methods of, e.g., (261, this will 

enable us to eventually automate the extraction of the tree-level superpotential. 

Our better understanding of reed fernlionization also allows us to probe cases of 

real fermion spin structures where the prescription of [27] breaks down. In the 

conclusion we make a critical appraisal of free fermionization, list some remain- 

ing problems, and discuss extensions of our methodology. We do not 

to display any phenomcnologically compelling models in this paper. 

attempt 

2. Spacetime symmetries and world-sheet operator algebras 

The two-dimensional gauge principle of heterotic string theory is (1,O) 

snperconformal invariance [7][5]. In light-cone gauge,’ the decoupling of time- 

like and longitudinal degrees of freedom results in a unitary conformal field 

theory, with a Hilbert space of positive norm. The field content includes the 

non-compact transverse spacetime coordinates, X’=%‘(Z)+X’(r), ~=1,2, and 

their Mnjorana-Weyl ferrnion superpartners, tip(i). In addition, there is an in- 

ternal (1,0) unitary conformal field theory of central charge (9,22). Every 

’ We restrict ourselves to spacetime backgrounds with four dimensional Lorentz 

iovarience. 

physical state corresponds to the lower component of a conformal dimension 

(hR, hL)=( f, 1) world-sheet superfield transforming under the (1,0) snpercon- 

formal constraint algebra 

The notion of finding world-sheet constraint algebras related to spacetime 

properties of the low-energy effective field theory was first explored in references 

(1][54]. We begin by reviewing the familiar example of gauge symmetry in order 

to explain how the constraint algebra can be used to build a solution to string 

theory embedding a specific low energy spectrum of fields. 

In an N=l spacetime supersymmetric vacnnm all of the gauge symme- 

tries are msocisted with the left-moving conformal field theory 171. Then there 

must exist vertex operators of conformal dimension ($, 1) which transform aa 

spacetime vectors, corresponding to gauge bosons: 

vyz,q = ~‘,(z)J”(z)ei~~x ( (2.1) 

where CP is the transverse polarization vector, C. k=k k=O, and J”(r) is a 

dimension (0.1) primary field in the left-moving internal conformal field the- 

ory. Gauge symmetry is therefore a consequence of an extension of the (1,0) 

superconformal constraint algebra by dimension (0.1) currents. The presence 

of the gauge hosons in the spectrum of massless fields implies that any chirirl 

superfields that appear in the spectrum must satisfy the selection rules imposed 

by gauge invariance. In world-sheet language this implies strict agreement with 

the fusion rules of the world-sheet current algebra. 

The operator product algebra of the dimension (0,l) operators, J”(r), 

determines the structure constants and Schwinger term of a current algebra’: 

kPb 
J”(~)J’W = fL-,,jZ + 

ipbCJ 
(*-$ + ... (2.2) 

This current algebra is, in general, based on the product of simple non-abelian 

and abelian group factors. For any simple group factor, G, the I”” appear- 

ing in (2.2) are the structure constants of a Lie algebra normalized to give 

’ We will use the term currmt algebra for what is often referred to M M &ine 

Ksc-Moody algebra 155][561. We will ~sume that the low energy gauge symmetry is 

related to a compact Lie group. 
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f“bcfdb’=CA6”d, where Ca is the quadratic Casimir of tbe adjoint rcpresenta- 

lion. The central charge from any simple group factor is given by the formula 

Q(G) = 
k dim(G) 

k+fC., ’ (2.3) 

wlwre tbe constant, k, appearing in the Schwinger term is a dimensionless 

constant which also measures the relative strength of graviton exchange to 

gauge boson exchange in the tree level scattering of four gauge bosons at tbe 

string unification scale, M.,,i.,. Thus, 

G~Af:t,in, - kkin, 

Her=. drins is the dimensionless gauge coupling at the string scale, and 

GpA4;’ is Newton’s constant 157). Th e constant, k, is restricted to take 

integer values due to the unitarity of the conformal field theory; k is called the 

level of tbe current algebra realization. 

In order to build a solution containing a specific low-energy spectrum of 

vector and cbiral superfields, it suffices to find a realization of those gauge 

bosons which correspond to the simple roots, and the chiral superfields corre- 

sponding to the highest weights of the desired irreducible representations. The 

current algebra will autom4cally generate complete supermultiplets in the so- 

lution if care is taken to preserve the string consistency conditions of world 

sheet supersymmetry and modular invariance. 

Thus, Lore&z invariance, spacetime supersymmetry and gauge invariance 

determine, in part, the emission vertex of any chiral superfield. Consider, for 

example, the vertex operator associated with a fixed helicity of a chiral su- 

perfield transforming as a sparetime fermioo, V,.*(L, f). The vertex operator 

corresponding to tbe highest weight of an irreducible representation r will take 

the form, 

V,?(r,Z) = s(i)o(i)f~(z)F(z)e’*x (2.5) 

We have left unspecified the dimension (i,O) primary field, O(i), which must 

occur in the Ramood sector of the internal superconforrnal field theory; its 
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form is restricted by the spacetime supersymmetry currents. S(r), is a di- 

mension (t, 0) spin field in the Rarnond sector of the conformal field theory of 

the Majoraoa-Weyl fernlions ti”(Z). The I&c-Moody primary field fr(z) is of 

dimension (0, h,), and F( ) L IS a au g g e singlet of dimension (II, 1 - h,). 

With higher level realizations of the current algebra, new matter represen- 

tations can appear consistent with the requirement of unitarity of the underlying 

conformal field theory. This introduces new options for spacetime gauge and 

gravitational anomaly cancellation, depending on which chiral fermion repre- 

sentations appear in the massless spectrum. A detailed tabulation of which 

representations and conformal dimensions are allowed in an affine Lie alge- 

bra at arbitrary level can be found in 1581 and 1561. We should emphasize that, 

while unitarity is a restriction on which representations can appear at any given 

level, not every allowed representation need appear in a conformal field theory 

described by an asymmetric modular invariant. 

3. Embedding higher level current algebraa 

The easiest way to realize a specific spacetime gauge symmetry in a con- 

sistent solution to string theory is to find an embedding of the current algebra 

in the tensor product of simple constituent conformal field theories. The best 

known constituents are free bosons and free fermions. However, as will become 

apparent, the method can be applied more generally. 

The basic idea underlying the higher ievel current algebra realization is very 

simple. We begin by realizing the r abelian currents of the Cartan subalgebra of 

the group in a conformal field theory denoted as CFTA. An abelian generator 

can always be realized by a chiral boson with no loss of genemlity. If we are 

realizing a non-abelian current algebra the chiral bosoms have rational conformal 

dimensions (see, for example, [56][59]). Thus CFT A 19 constructedusing r chiral ‘. 

bosoms with conformal dimensions, hr=p~/2=m/n, with m, n integers. 

For a higher level realization it is not possible to construct the remain- 

ing currents of the nowabelian current algebra using only operators of the free 

boson ronformal field theory, CFT,. Thus what we actually need is a tensor 
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product of CFT,, with some other coostituents, which we will denote collec- 

tively as CFTB. In this paper we restrict ourselves to the cases where CFT, 

is constructed using unpaired Majorana-Weyl (real) fermions. This is a strong 

restriction on which gauge groups and representations can be obtained in this 

class of solutions. The obvious generalization is to dlow as constituents of 

CFTe any of the unitary conformal field theories with central charge ccl [So]. 

These conformal field theories have a finite number of chiral primaries under the 

Virasoro algebra and rational conformal dimensions, hi<l. They have no spin 

one currents. The corresponding Virasoro characters, which enter the string 

partition function, have well-defined modular transformation properties. 

If the tensor product CFTA xCFTe successfully realizes a current algebra, 

then the total central charge CA+CB must at felut equal c,(G). If cr+cs>cb(G) 

this implies that we have realized, in addition to the higher level current algebra, 

some &her holomorphic algebra which contains no currents. We will refer to 

this other algebra as a dixwte holomorphic opemtor aigebm. 

Thus the (left-moving) stress tensor for a higher level current algebra re- 

alization has, in general, two distinct decompositions: 

T = TA + To 

= TKM + Tdimrrte 
(3.1) 

, 

where TKM denotes the Sugawara form of the stress tensor of the higher level 

current algebra, and Tdi,creL. denotea the coset algebra formally defined by the 

relation (3.1). 

Two observations of considerable practical importance are as follows. The 

rank of the low-energy gauge symmetry in a four dimensional ground state is 

bounded by the central charge of the left-moving internal conformal field theory, 

Ci rank(Gi) 5 22. Also, the dimensions of individual matter representations 

that can appear at the massless level are bounded by the condition, xi hi < 1 

[611ll31. 
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The conformal field theory of a third boson, 6(z), with rational-valued 

momentum, p. is equivalent to that of a Weyl fermion, A(r), with fermionic 

charge, Q: 

ad -+ : A’), : 

i+ij=F-Vl 
” . 

Here F is the fermion number operator, and the vacuum fermionic charge, U/R, 

is rational-v&cd. The abelian current is realized by the Weyl fermion bilinear. 

Fermionic representations of current algebraa that utilize fermion bilinears are 

well-known. The non-simply-laced algebraa at level one can be realized by 

Majorana-Weyl fermions. For example, the generatorsof SO(Zn+l) are realized 

by n Wcyl fermions and a single Majorana-Weyl fermion, or equivalently, 2n+ 1 

Majorana-Weyl fermions. The currents are the 2n(2n + 1)/2 Majoram-Weyl 

fermion bilinear pairs. 

When we realize the Cartan currents using Weyl fermion bilinears, every 

distinct group weight will be realized as .a unique set of fermionic charges. 

This representation of weights in a basis defined by fermionic charges is fixed 

once we specify the fermionic charges of the r simple roots 1621. We then 

identify in CFTA holomorphic operators, +;,,..,,-(z) with the correct fermionic 

charges (q,, qr) to represent all of the currents, P(r), of the higher level 

algebra Since these primaries may not have conformal dimension 1. we then 

must identify other operators in CFTB to make up the difference. Thus 

J’(~)=+;,,...,,(z) x 9>(z) (3.3) 

The above .&so holds for chiral bosons when we map weights into momenta. 

3.1. Canonical Embeddings 

Let us explain, from first principles, how one can identify a realization of 

some given current algebra at arbitrary level. assuming explicit knowledge of the 

conformal dimensions, operator product coefficients, and Virasoro characters of 

the chiral primaries of the constituent cooformal field theories. 
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There are many possible free field embeddings of any given current algebra. 

We will refer to the embedding with the lowest possible total conformal anomaly 

as the canonical embedding. One advantage of using a canonical embedding of 

the roots (e.g., the standard Cartan-Weyl basis for a level one realization) is 

that the model builder avoids the pitfall of unexpected extra gauge symmetry 

such as U(1) factors in the final solution. 

We begin with a realization of the Cartan subalgebra of the group. Each 

of the r abelian currents is realized by a chiral boson 

hi = a+; i = l;..,r , (3.4) 

where r is the rank of the gauge group. These are operators of conformal 

dimension one. Let us assume that the momentaof the individual chiral hosons 

are quantized such that 

4ik9 + 2a,n) = 4;(u,,uz) + 2?rp; (3.5) 

Consider vertex operators of non-zero momentum 

vi*’ = C,(j): .*iF+ : , (3.6) 

where pj and 4 are r dimensional vectors, and the C’,(e) are cocycle operators. 

This is the familiar vertex operator construction used in the EB xE8 heterotic 

string 151: if the pj lie on the root-lattice of a simply-laced group the commu- 

tation relations of the vertex operators, with cocycle operators appropriately 

defined, will reproduce the structure constants of the associated current alge- 

bra. Given the structure constants, the level k of the current algebra realization 

is fixed by the normalization of the root vectors. This determines the normal- 

ization of the ah&an currents. 

Now consider a specific example of this construction in the context of het- 

erotic string theory. Begin with five copies of the root lattice of SU(2) 

(I*dzo,o~o,ol) , 

where the square brackets denote permutations, and we have normalized the 

roots to length crZ=2. Let us assume that this lattice is embedded in the 

22 dimensional sublattice of an even self-deal Lorentzian lattice of dimensioo 

(6,22) [63)(5]. The states corresponding to the roots of (SCJ(2))’ given in (3.7) 

will then appear at the massless level, with pi=2, hL= I, and correspond to 

spacetime gauge bosom?. The realization of the gauge symmetry is at level one. 

Ram the properties of self-dual lattices, it follows that the weight lattices of 

w(2))5 

(I*~w,o,ol) (3.8) 

are present in the (6,22) dimensional lattice 1591. Ignoring the precise cow 

straints from modular invariance, imagine that we perform a sequence of orb- 

ifold twists accompanied by shift vectors embedded in the (SO(2))s lattice 

whose net effect is to project out the individual roots and weights but leave 

intact the lattice points 

(I*Ij;>*$Ao,ol) 1 

where all permutations are included. The counting of states is correct to fill out 

the adjoint representation of the group SO(lO), 5.4 2 + 5 giving a total of 

45 states if we include the states corresponding to the five abelian currents. 

Suppose we rescale the normalization of the abelian currents by a factor 

of two. Then the length of the lattice vectors in (3.9) is exactly what is needed 

for a level two realization of the gauge symmetry. The only problem is that the 

states of non-zero momentum no longer appear at the mawless level because 

the (left) conformal dimension ia only i pi=$. This problem is easily fixed. 

The central charge of SO(10) at level 2 can be read off from the formula (2.3) 

given in the previous section, where C~=2(2n - 2) for SO(2n). The central 

charge of the embedding conformal field theory of five cl&d bosons is c=5. 

Thus, if we can find a (rational) conformal field theory with central charge c>4, 

primary fields of ronformal dimension i, and no dimension one currents, by 

tensoring together the two conformal field theories it should be possible to find 

an embedding of these states at the massless level. A necessary requirement is 
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that we exactly match the conformal dimensions and counting of states given 

above without modifying their fusion roles. 

Let us outline how to find such an embedding for our toy model.’ The first 

five left-moving entries of the (6,22) dimensional lattice before twisting have 

, already been determined (X7), (3.8). Let us assume that the next eight entries 

embed the roo&ttice of SO(16) 

(I~l,~1,0,0,0,0,0,01) 

Together with the spinor and conjugate spinor weights of SO(16), 

one obtains the & lattice. This lattice is easily embedded in an even self- 

dual Larentzian lattice given by the sum of the root and weight lattices of 

(SU(2),)s x (S(1(2)~)~ x Es x E; 1631. Th e self-dual lattice describes the 

compactification of the ten dimensional &xl?; h&erotic string on an (SU(2))# 

torus. 

The conformal field theory underlying the ES lattice has a fermionic rep 

resent&ion [7][5]. The eight chiral bosons can be fermionized as follows: 

&hi - : A,tAi : i = 7,. (14 

8’ + (.-l)bGAi (3.12) 

ei + pi - ;1 

The equivalence between momentum and fermionic charge for momentum quae- 

tized in half-integer units, p; = n/2, implies that the conformal field theory of 

the Weyl fermions has two sectors. The two sectors correspond to choosing 

Neveu-Schwarz (antiperiodic) or Jlamond (periodic) boundary conditions for 

the fermions, respectively, v;=O, 1: 

Xi(0, +2a,o2) = -4’“~Xi(U,,(T2) (3.13) 

’ The reader will recognize an obvious parallel with the asymmetric orbifold con- 

struction in the discussion that follows. 

The roots of SO( 16) correspond to oscillator excitations in the Neveu-Schwarz 

sector. The spinor weights given in (3.11) correspond to states in the Ramond 

sector, with fl=O, 1, and v;=l, for all i. In the one-loop vacuom amplitude 

this sector is labelled by a vector specifying the boundary conditions of the 

individual fermions, tti, i = 1,. ,8, 

(11111111) 

Thus, in the absence of constraints from any other sectors, this sector con- 

tributes the 2’ spinor and conjugate spinor weights of SO(16) in the one-loop 

vacuum amplitude. 

For convenience, we can rewrite the Weyl (complex) fermions as Majorana- 

Weyl fermions, &=@’ + i&*‘. The two Majorana-Weyl fermions associated 

with each of the eight Weyl fermions share the same boundary condition in 

every sector summed over in the one-loop vacuum aihplitude. Implicitly, we 

are now allowing for the possibility of Majorana-Weyl fermions which are no 

longer paired into complex fermions. Some of these may be right-left paired 

into Majorana (Ising) fermions. Any Majorana-Weyl fermions which are tru- 

ely unpaired we call real fermions. In the absence of a complexification of 

the Majorana-Weyl fermions. a conserved fermionic charge, or equivalently, a 

conserved bosonic momentum, can no longer be defined. We can m-label the 

sector (3.14) contributing the spinor weights of SO(16) by the corresponding 

boundary condition vector (ui=l, i = 1,. .16) for stileen real fermions: 

(11 11 11 11 11 11 11 11) (3.15) 

Ignoring once again the constraints from modular invariance, consider the 

possibility of blocks of chid 22 twists on the ES lattice accompanied by the 

shift vectors embedded in the (SU(2))’ lattice such that all of the ES gauge 

symmetry is broken to a discrete subgroup. This corresponds to introducing 

new sectors in the one-loop vacuum amplitude which contribute states of non- 

zero momentum in the conformal field theory of the third bosons. $i, i=l, ., 

5, corresponding to the latt.ice points (3.9), matched with the tensor product 
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of Ramond ground states for blocks of eight real fernlions rhosen from the set, 

#I .- 
I 3 t-1, ..., 8, and j = 1,2. In order to break all of the ES gaug? symnletry 

we need to include at least four sectors in the one-loop vacuum amplitude, 

corresponding to the following boundary condition vectors for the sixteen real 

fermions: 
(1111 1111 ooocl oooo) 

(oooo 1111 1111 oLwcl1 

(1100 1100 1100 1100) 
(3.16) 

(1010 1010 1010 1010) 

The contribution to the left conformal dimension from the Bamond vacuum 

energy in each of these sectors is & 8=). Therefore, oscillator excitations 

described by fermion bilinears of the form, : $& :, contribute with conformal 

dimension greofer than one in these sectors and are pushed up to the massive 

level. The sectors (3.16) also act as constraints on the unhtisted sector, i.e., the 

sector with all fermions in the Neveu-Schwan vacuum, so that these dimension 

one states are projected out of the spectrum by the requirement of modular in- 

variance. Thus the untwisted sector does not contain any currents. Of course, 

one must still be concern&l with additional dimension one states that can con- 

tribute from twisted sectors. Choosing the projections on the spectrum such 

that no additional dimension one currents appear requires a detailed knowledge 

of the constraints from one-loop modular invariance. While this certainly could 

be done, we will not pursue this toy model any further. Certain elements of the 

toy model can, however, be recognized in the examples of section 4. 

The embedding (3.9) of the roots of SO(10) in the doublets of five copies 

of SU(2) is a special case of the embedding of the roots of SO(2n) at level 

k=2 in the fundamental wright-lattices of the group (SU(2))“. The pattern 

further generalizes to an embedding of the roots of SO(2n) at level k in the 

momentum lattice of n chiral bosons, with momentum quantized in units of 

114. Embeddings of the roots of the special unitary groups can be worked 

out by the same nwthod. 

3.2. Fernionic Enrbeddtngs 

Now let us slwci;dPze to the case where the c=l const,iturnts of CFT, are 

Weyl fermions and the constituents of CFTs are c=$ Majorana-Weyl fermions. 

It is important to distinguish between a fermionic embedding and a 

fermionic represenlotion of a current algebra. A fermionic embedding is simply 

a mapping of the roots of a Lie algebra into fermionic charges. A fermionic rep 

resent&ion is an embedding where the total conformal anomaly of the fermions 

equals the central charge of the Kac-Moody algebra. An example of a higher 

level fermionic representation is SU(2) at level two realized by three Majorana- 

Weyl fermions. 

Fermionic representations may or may not exist depending on the group 

and the level of the current algebra. The orthogonal groups at level one have 

fermionic representations. But the special unitary groups at level one are only 

obtained in the fermionic embedding of the group SU(n)xU(l). The ‘extra’ 

U(1) in a fermionic embedding cannot be broken by standard stringy symme- 

try breaking techniques, e.g., a Zz twist, without simultaneously breaking the 

nonabelian symmetry. 

These statements have counterparts for fermionic realizations of higher 

level current algebras. A fermionic embedding fixes the level of the current 

algebra if the abelian generators are assumed to be canonically normalized. 

This is because the embedding fixes the lengths-squared of the roots, which, as 

is apparent from (2.2), are inversely proportional to the level. To be precise, let 

~=ha,...d d enote the fermionic charges of a root; then d’ must have 

the same value for all the roots (all the long roots if the group is not simply 

laced). The level is then given by 1281: 

k=-l- s (3.17) 

An example of a higher level fermionic embedding is the minimal fermionic 

embedding of the roots of SO( 10) a t I eve1 two, which requires siz Weyl fermions 

[28](see section (4.1)). Since there is an additional abelian generator orthogonal 

to the space spanned by these roots, the six Weyl fermions actnally provide an 
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embedding of SO( lO)x(l( 1). It is also possible to find fermiooic embeddiogs of 

special uoitary groups within a semi-simple group: for example SU(S)xSU(Z), 

with the SU(5) at level two and the SU(2) at level four, sod Sp(G)xSU(3), 

with the Sp(6) at level one and the SU(3) at level two. 

A fermionic realization is a fermionic embedding or representation together 

with a realization of the currents and physical states corresponding to the gauge 

bosom in a consistent string vacuum. A fermionic embedding does not neces- 

sarily extend to a fermionic realization, since we are restricting the constituents 

of CFTs to be real fermions. A necessary condition is that one can identify 

dimension (OJ) operators with fermionic charges corresponding to all the roots. 

For the types of operators in CFTA which are relevant for constructing currents, 

there is a simple relation between their fermionic charges and their conformal 

dimension[l4]: 

h+j2 . (3.18) 

Simple examples are single Neveu-Schwarz fermion operators +, tit, (which 

create single fermionic excitations of the Neveu-Schwarz vacuum) having h=1/2 

and fermionic charge il. and single Weyl fermion twist fields (r, p, (which create 

the doubly-degenerate Ramond vacua from the Neveu-Schwarz vacuum) having 

h=1/8 and fermionic charge *I/2. 

As will be discussed further in section 5, the c=1/2 conformal field theory of 

a single Majorana-Weyl fermion contains primary fields with conformal dimen- 

sion 0 (the identity), l/16 (twist fields), or l/2 (the Neveu-Schwarz fermion). 

Thus there are a limited number of ways to construct currents. In particular. 

if 2 represents the fermionic charges corresponding to some root, then the 

current corresponding to that root exists only if there is a solution to 

where ml, m2 are nonnegative integers. 

Combining (3.19) with (3.17), we obtain an important restriction’ on the 

possible levels for current algebras with fermionic redizations: 

k = 1, 2, 4, 8, or 16 (3.20) 

’ Conditiou (i) of section 5.3 rules out the caw kz16. 
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It should be noted that the higher level fermionic embedding does not 

uniquely determioe the fermionic realization of the current algebra. An example 

is given in the next section. 

4. Real Fermionieetion: examples 

To understand in detail how the constraints from modular invariance deter- 

mine the spectrum and couplings of a solution, it is useful to focus on a specific 

set of constituent conformal field theories. Fermionization of the internal (2.0) 

unitary conformal field theory is a relatively straightforward technique for gen- 

erating explicit solutions to the string consistency conditions [14][15][271. In this 

section we will explain how the ideas we have introduced in the previous two 

sections get implemented in the context of specific examples. These examples 

have been constructed to illustrate how particular phenomenological aspects 

find their realization in string theory. AIthou6h our methodology has the pw 

tential of steadily leading to more phenomenologically compelling models, the 

models discussed here were selected for their pedagogic value only. 

The constituent fields of the internal supercoaformal field theory are a 

collection of Majorana-Weyl fermions. Some number of these are paired into 

right-moving or left-moving Weyl fermions, or into right-left paired Majorana 

(Ising) fermions. The total central charge sums to (9,22) for a vacuum with 

four dimensiond Lore& invariance. Including the two right-moving Majorana- 

Weyl fermions with a spacetime index gives a total of 20 right-moving and 44 

left-moving constituent fermions. 

The boundary conditions of the fermions about the two non-contractible 

loops on the torus specifies their spin-structure. Consider first the Weyl 

fermions which are obtained by a complexification of a pair of Majorana-Weyl 

fermions, A(t) = (1,, (2) + i&(z). The fermionic charge (bosonic momentum) is 

allowed to take any rational value. The possible (twisted) boundary conditions 

are denoted: 
X(0, + 2n,oz) = -2-l” A(o,,oz) 

>‘(a, + 2n,az) = -e-*‘“A’(u,,6*) 
(4.1) 

, 
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where u takes any rational value restricted to ttw domain -l<u<l. The 

boundary conditions described by eq. (4.1) redore to R possible sign Hip for 

both Majorana-Weyt fermions combined with a rotation of the Majoraoa-Weyl 

fermions among themselves: 

( 

h(m + 2T,Q) _ _ 

> ( t&(01 + 2r,oz) - -:::“v’, zg:‘,) (::;z::::;) (4.2) 

A right-moving and a left-moving Majorana-Weyl fermion paired to form a 

Majorana (Ising) fermion are both either periodic (Hamond) or antiperiodic 

(Neveu-Schwan) in every sector of the partition function. Any Majorana-Weyl 

fermions which are unpaired are called real fermions. Real fermions take Ra- 

mend or Neveu-Schwarz boundary conditions. 

In general, the one-loop vacuum amplitude (partition function) 2pcrmion 

can be written as a sum over al1 possible spin structures generated from a set 

of bo.& vectors, {Vi), i.e., the boundary condition vectors for the constituent 

fermions which span the sectors summed over in the partition function: 

&e.“,,..(7) = CC$Z$(r) , (4.3) 
a.0 

where (IX;), (fli) are independent sets of nonnegative integers both generatiog 

linear combinations of the basis vectors vectors I$. The C$ are projection 

coefficients associated with each specification of spin structure; they determine 

the phase with which the states in a particular sector contribute to the partition 

function. 

The Z:(T) for each spin structure are defined in a Hamiltonian represen- 

tation as: 

Z,u(T) = Tr ((-1)u~Fv exp (2*irk+ - 2riffi:)) (4.4) 

For the Weyl and Ising components, the GSO projection operator, (-l)“‘i’v, 

is defined in the obvious way from the fernlion number operator @; for real 

fernlions its explicit form is more complicated (271. 
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The coeflirients Cp”: are conveniently rewritten as: 

c:$ z e z”i(~~n,X.,p,+lr...-8.~.) 
(4.5) 

where the kij are rational parameters, repeated indices are summed, and ai 

takes values 0 or -l/2, depending on whether the basis vector Vi contributes 

spacetime bosons or fermions, respectively. To define a solution, it is only 

necessary to specify koo and the kij for i>j; the other k;j are then fixed by 

modular invariance. 

A solution takes the form of a definite specfrum of physical states that 

survive all of the projeciiotu imposed by string consistency. The partition func- 

tions for interesting solutions sum over thousands of spin structures, thus it 

is clearly not practical to perform the required projections by hand. Instead 

we have developed a symbolic maniputatioo package 1521 which automatically 

extracts the massless spectrum of solutions compatible with the fermionic for- 

mulation introduced by Kawai, Lewellen, Schwartz, and Tye (KLST)[27]. This 

program takes aa input a list of basis vectors, x, and projection coefficients, 

kij. It then checks for string consistency, performs the GSO projections, checks 

for spacetime supersymmetry, identifies the gauge group and its embedding 

from the gauge bosons in the masstess spectrum, then outputs the full massless 

spectrum organized into irreps of the gauge group. The tree couplings of phys- 

ical states can be inferred from their decomposition into primary fields of the 

constituent conformal field theories. However, because of the new formalism 

required for real fermions (aa wilt be described in the next section) we have not 

yet automated the extraction of the full tree-level superpotential. 

The notion of embeddings makes such a methodology particularly well- 

suited to realizing operator algebras that determine specific spacetime sym- 

metries. Every model contains the untwisted (i.e. all Neveu-Schwan) sector, 

which ordinarily would contribute the gauge bosom of the groui, SO(44), or 

its regular subgroups. In the solutions we are interested in, most of the gauge 

bosom and chiral matter do not appear in the untwisted sector. Rather, the 

twisted sectors embed most of the gauge bosoms and the matter representations. 

This is an important distinction from the familiar (2.2) compactiiications, or 
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(2,0) constructions that are related to (2,2) compactilications [13]]64], where 

the tow-eoergy gauge symmetry is realized io the untwisted sector. 

The kij for i>j and koa are dl zero except for the following which are equal to 

-l/2: kn, kn. km, km, kss. =nd ha. 

The spin structures are specified by listing the basis vectors K, which have 

20 right-moving and 44 left-moving components separated by a double verticd 

line. Since we use a 64 component Majorarm-Weyt notation, Weyt fermion spin 

structures are written as left-left or right-right pairs, and Ising fermion spin 

structures by left-right pairs. As dways 0.1 denotes Neveu-Schwarz/Ramond 

boundary conditions; we also use ++ and -- to denote a Weyt fermion whose 

boundary condition is ri times itself when taken around a noncontractible loop. 

The first two components of every vector refer to the right-moving fermions 

with spacetime indices, $“(i). Thus (00) in these slots indicates a spacetime 

hoson; if $P(E), P(i), and P(L) are not excited the resulting mllssless states 

in such a sector are scaIars. On the other hand, (11) indicates a spacetime 

fermion, in this case the two possible values of the “fermionic charge”, *l/2. 

distinguish the two heticity states. 

Apart from the spacetime lenaions, the right-movers in this model corre- 

spond to 7 world-sheet Weyl fermions and 4 Majorana-Weyt fermions. Three 

of the Majorana-Weyt fermions ( in slots 17, 19, 20 ) pair up with left-movers 

to make 3 Ising fermions; the fourth Majorana-Weyl fermioo ( in slot 16 ) is 

associated with 15 left-moving Majorana-Weyt fermions as a block of 16 red 

fermions. There are 7 fermionic charges associated with the complex right- 

movers; they take values 0, *l/2. and fl for mawless states. These charges 

result in discrete symmetries in the low-energy effective theory. 

4.1. Model A 

This example has N=I spacetime supersymmetry, SO( 10) realized at level 

two, chiral fermions, and Higgs in the 10 and 45 of SO(10). 

The left movem are separated into four blocks, embedding the visible mat- 

ter gauge quantum numbers, the real fermion spin structures, the Ising fermion 

spin structures, and the hidden sector gauge quantum numbers. In this example 

the first 12 left-mover slots denote 6 Weyt fermions. The 6 associated fermiooic 

charges take values 0, *l/2, and fl for massless states; these charges are sim- 

ply weights of the visible gauge group SO(lO)xCJ(l), in the basis defined by the 

embedding of the root lattice in the sectors which contain the gauge bosons. 

The 46 gauge bosom of SO(lO)xU(l) are distributed in 8 sectors as shown in 

Table 1. 

~‘0:(11111111111111111111]]111111111111]111111111111111]111]11111111111111) 

v,: (11100100100100100100]]~]~]000]~) 

v,:(~]]llllllIloooo]llllIl1lootmoMI]oOo]o) 

v,: (~]]~]OoOolIIlIllloOu]OOO]~) 

v,: (~]]110000111111]110011001100110]000]O) 

v,: (111Do1ooo1w10010010]]1111uooo1100]10101u101010100]010]110000000000M)) 

v.: (11010010100100001001(]1111OoOo1100(101001011010011]101]WOOOOOOOOMWM) 

v7:(11001001001001100100]]111100001100]1111ooo01111ooo]ooo]00110000000000) 

v.: (0011011011011oOOOOw]]O ]010101010101011]ouo]~) 

v,: (ooooooooot~oMJlI]]uooooooooooo ]00000000000000(1]011]~11~~~~+++++) 

Model A 

Seclor 

untwisted 

v, 

v, 

v, 

v,+v, 

v,+v, 

v,+v, 

v2+vs+v, 

No. of PSUW boson shies 

10 

8 

4 

4 

8 

4 

4 

4 

Table 1 

23 24 

Real fermion b.c. ‘s 

t-j 

(1111111100000000) 

(OooO1111111IOooo) 

(1100110011001100) 

(llllooOollllooOo) 

(0011001111001100) 

(1100001100111100) 

(001111OoOO111100) 



In the untwisted sector, massless gange bosoms arise from states with 

a spacetime fermion excited and a pair of left-moving Weyl (or pseudo- 

complcx”) fermion modes excited. In the first 12 left-mover slots which em- 

bed SO(lO)xU(l), there are 66 snch pairs, but only six of these survive the 

projections. These six gauge bosons correspond to exciting the particle and 

antiparticle modes of each of the six Weyl fermions; the resulting fernrionic 

charges for all six are (O,O,O,O,O,O). Obviously the six associated cnrrents are 

the Cartan elements of SO(lO)xU(l); because these Cartan currents are real- 

ized by fermion bilinears we can read off any weight of SO( lO)xU(l) from the 

six corresponding fermionic charges. 

The embedding of SO(10) in these six fermionic charges is completely 

characterized by the fermionic charges of the five simple roots (281: 

( 0, 0, 0, 1, 0, 0) 

(l/2,-1/2,-1/2,-1/2, 0, 0) 

( 0, 0, 1, 0, 0, 0) 

( 0, m-1/2, 0,-l/2, l/2) 

( 0, WV4 0, 1/2,-1/q 

It is apparent then that the U(l) weight is proportional to the turn of the 

fifth and sixth fermionic charges. 

There are additional gauge bosons in the untwisted sector which arise 

from exciting one of the six Weyl fermions just discussed together with a 

mode from one of the seven pseudo-complex left-movers comprising the block 

of real fermions. There are 12 distinct fermionic charges which could result: 

(*l,O,O,O,O,O), (O&1,0,0,0,0), etc.. H owcver after t,he GSO projections only 

four of these appear in gauge boson states: (fl,O,O,O,O,O) and (O,f1,0.0,0,0). 

Let us consider the other sectors which contain gauge bosons in tarn. Mass- 

less gauge bosons from V, arise when all the left-movers are in the vacuum state. 

The first 12 left-mover slots of Vz are (11111111OOM); the associated fermionic 

charges are 

All of these charges correspond to roots of SO( lo), however, only 8 of these 

16 charges appear in gauge boson states after the projections. The other 8 

of these 16 charges appear in the gauge boson states in V,+V,. Note that V, 

and V,+V, differ only by the boundary conditions of the real fermions, thus 

it is the real fermion structure which correlates the GSO projections in these 

two sectors. Massless gauge bosons from V, require one excited left-moving 

Weyl (or pseudo-complex) fermion mode. The first 12 left-mover slots of V, 

are (B). There are 12 possible fermionic charges for massless gauge 

bosons of SO(lO)xU( 1): (il,O,O,O,O,O), (O,*l,O,O,O,O), etc.. However after the 

projections only four of these appear in gange boson states: (O,O,+l,O,O,O) and 

w4w,*v,o). 

Massless gauge bosom from V, arise when all the left-movers are in the 

vacuum state; the associated fermionic charges are 

(*~,o,o,i;,*~,*~, (4.7) 

Now for a state to be neutral under the extra U(1) of SO(lO)xU(l), the sum of 

the 5th and 6th fermionic charges must be zero. Thus only 8 of the 16 charges 

in (4.7) correspond to roots of SO(10). Of these 8, only fonr appear as gauge 

bosons in V, after the projections. The other four appear as gauge boson states 

in V,+V,. Lastly, the gange bosons coming from ti,+V, and V,+V,+V, are 

exactly analogous to the above discussion of V, and V,+V,. 

Table 2 summarizes the fermionic charges of the 45 SO(10) gauge bosons. 

’ SW section 6.3 for R discussion of pseudo-complcxification 
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&,&y 

untwisted: 

v,: 

v, : 

v, : 

v,+v, : 

v,+v, : 

vt+vc : 

vz+v,+v, : 

Fennionic charoes 

5~(0,0,0,0,0,0) 

l (mo,o,o,o) 
*(l/2,-l/2,1/2,-1/2.0,0) 

*(1/2,1/2,1/2,-1/2.0,0) 

*wv,w,o) 

*(l/2,0.0,1/2.1/2,-1/2) 

f(1/2,-l/2,-1/2,-1/2,0,0) 

*(~/2,~/2.~/2,1/2,0,0) 

~(0.1/2,1/2,0,1/2.-l/2) 

*(l/2,0,0,-l/2,1/2,-1/2) 

*(0,1/2,-l/2,0,1/2.-1/2) 

Table 2 

*wJ,~,o,o,o,o) 
f(1/2,-l/2,-1/2,1/2,0,0) 

~(1/2.1/2,-l/2,1/2,0,0) 

*omo,l,o,o) 

*(l/2,0,0,-l/2,-1/2,1/2) 

*(1/2,-1/2,1/2,1/2,0,0) 

l :( l/2,1/2,-l/2.-1/2.0,0) 

*(0,1/2,-1/2,0,-1/2.1/2) 

~:(1/2,0,0,1/2,-1/2,1/2) 

*(0,1/2,1/2,0,-1/2,1/2) 

Thus we have understood the gauge bosons and fermionic charges corre- 

spending to all 45 roots of SO(l0); this defines an explicit embedding of the 

gauge group into 6 fermionic charges. It is then easy to translate the weights 

of any other irrep into fermionic charges, and thus read off the gauge quantum 

numbers for all the massless states in the spectrum. Of course, because of the 

N=l spacetime supersymmetry, the massless matter fields group into chiral 

supermultiplets containing a complex scalar and a Weyl spinor. Because the 

gravitino resides in sector VI, the superpartner of a boson/fermion in sector 

o;V; must always be in sector V,+aiVi. It is a convenient shorthand when we 

count “states” in the massless spectrum to count them four at a time: two 

scalars and two CPT conjugate spinor states. 

In this model the embedding of SO( IO) x U( 1) rs such that fermionic charges 

(l/2,1/2,0,0,1/4,-1/4) indicate the highest weight of a 16 of SO(lO), with U(1) 

charge zero. It is obvious, therefore, that this model contains no neutral 16’s, 

since these require boundary conditions (++--) in left-mover slots 9 through 

12. On the other hand, fermionic charges (l/2,1/2,0,0,1/2,0) indicate the high- 

est weight of a 16 of SO( lo), with V( 1) rharge l/2. Examining the basis vectors 

we immediately see that sectors Vs. V’, and I/, all potentially contribute states 
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of a massless 16. After performing the projections one finds that in fact V, and 

I’s contribute the highest weights of two chirrd 16’s each. However V, does not 

contribute any massless states at all to the spectrum: the projection from V, 

removes them. This feature is independent of the choice of kij’s; it depends 

only on the overlap between V, and V,. 

The 16’s are chiral because the helicity is correlated with the SO( 10) weight 

which distinguishes the 16 from the i& One also finds that sector V, + V, 

contributes the highest weights of two i@s; these may couple via adjoint Higgs 

in sector V, to the two 16’s in V,. making them superheavy. 

It is useful to observe that if the highest weight state of a 16 resides in, 

say, sector V,, then the states which fill out this irrcp must reside either in V, 

or in sectors which are the sum of V, and a sector containing SO(10) gauge 

bosons. Thus, e.g., for either of the two 16’s whose highest weight is in V,, 

the full irrep consists of four states from V, and two states each from V,+V,, 

v,+v,, v,+v,+v,, v,+v,+vS, v,+v,+v,, and vZ+v,+K,+vS. Note that no 

states of the 16 come from V,+V, in this example, but in general some could. 

The full gauge group of this model is SO(lO)xSO(8)x[U(l)]‘. SO@) is a 

hidden sector gauge group and ia redized at level one. However the embedding 

of SO(8) is nontrivial: the 28 gauge bosons are distributed in the 16 different 

sectors which can be formed from linear combinations of V,. V,, V,, and 2rVo. 

Hidden sector massless fields occur in the singlet, 8.. 8., and 8, irreps of SO(8). 

The role of the block of 16 real fermions in this model is twofold. First it 

reduces the rank of the gauge group. The maximal rank for the gauge group 

from the left-movers is 22; this is reduced by nine because of the three Ising 

fermions and the 15 left-moving real fermions. Thus the full gauge kroup has 

rank 13. 

The second role of the real fcrmions is that they make it possible to embed 

a higher level current algebra, simultaneously producing a discrete holomorphic 

algebra. From the discussion above of the gauge bosons it is easy to deduce 

how this model realizes the 45 currents of SO(l0) at level two. The Cartan 

elements, a5 alrendy mentioned, are fermion bilinears of the form A’,! and don’t 

involve the real fermions. There are four other currents which are also fermion 
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bilinears, hut where one of the fermions is pseudo-complex. From V, WC see 

that there are four currents which are composites of one Weyl fermion with 0 

real ferrnion twist fields. Lastly, there are 32 currents which are composites of 

4 Weyl ferrnion twist fields with 8 real fermion twist fields. 

To see the importance of the discrete holomorphic operator algebra, con- 

sider the massless adjoint Higgs in this model. There are two 45 Higgs super- 

multiplcts in Model A; the scalars are distributed in sectors as shown in Table 

3. 

Unlike the gauge bosons, these adjoint Higgs are not associated with the 

SO(10) currents, rather they correspond to primary fields with respect to the 

level two SO(10) Kac-Moody current algebra. These holomorphic primaries 

have conformal dimension 415. Since the operators which create physical states 

must have left conformal dimension 1, the adjoint Higgs must be a nontrivial 

element of the discrete operator algebra. This is encoded in the real fermion 

structure of V,. 

& 
VS 
WV, 
IG-kVS 
v,+vs 
v,+v,+vs 
wv,+v8 
v,+v,+vs 
wv3tv,+vs 

No. of slates Real fermion b.c. ‘3 

9 (0101010101010101) 

a (1010101001010101) 

4 (0101101010100101) 

4 (1001100110011001) 

8 (1010010110100101) 

4 (0110011010011001) 

4 (1001011001101001) 

4 (0110100101101001) 

Table 3 

It is interesting to note that even after fixing the embedding of SO( 10) in 

fermionic charges. there is still some residual freedom to adjust the accompa- 

nying real fermion structures. This can be seen by comparing Model A with 

the SO(10) level two model of Lewellen (281. L ewellen’s model can be obtained 

from Model A hy replacing V,~-V, with the following: 
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The kij for i>j and k,, are all zero in this model. 

Lewellen’s model embeds SO(lO)xU(l) into six fermionic charges in ex- 

actly the same way as Model A. However the real fermion content of the SO( 10) 

currents is slightly different. In particular, for Lewellen’s model the untwisted 

sector contributes only the six Cartan gauge hosons, while V, contributes eight 

gauge bosons instead of four. This means that there are no currents which 

are fermion bilinears and where one of the fermions is pseudo-complex; it also 

means that there are eight rather than four currents which are composites of 

one Weyl fermion with 8 red fermion twist fields. 

Such slight differences in the real fermion structure can have important 

consequences for model building. For example, Model A has a more natu- 

ral embedding of SU(5)&0(10) than Lewellen’s model. By simply setting 

ksx=-l/2, the level two SO(10) of Model A is broken to a level two SU(S), 

times a U(l). This is possible because, in Model A, all of the roots of SO(10) 

which are not also roots of SU(S)xU(l) are realized as gauge bosons in sec- 

tors involving I$. Modifying kos causes these gauge hosons to be projected 

out. Notice that the central charge of SU(5) at level 2, c=48/7, is not half- 

integer valued. Neither is that of the discrete halomorphic algebra, which has 

c=12 - (48/7). 

4.2. Model B 

This example has N=2 spacetime supersymmetry. SO( 10) realized at level 

two, and Higgs in the 54 of SO( 10). As in Model A, the five Cartan currents are 

realized as simple fermian hilinears in the untwisted sector. However in Model B 

these curreuts are linear combinations of fermion bilinear6 correslionding to 10 

left-moving Weyl fermions. The roots of SO(l0) are embedded in 10 fcrmionic 

charges, corresponding to the first 20 left-mover slots. The next 16 left-mover 

slots are again a hluck of 16 real fermions. 
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there are 2608 massless states which belong to supermultiplets containing ei- 

ther (i) a gauge boson, two Weyl spinors, and a complex scalar, or (ii) two 

Weyl spinors and two complex scalars. Thus the supermultiplets containing 

the 108 gauge bosom of S0(1O)xF,xS0(5)xU(1) account for 864 states; the 

remaining states form 218 matter supermultiplets in the following irreps: 

- 0°C 54 of SO(lO), 

~~~~~ one 26 of F, , 

~ one 5 of m(5), 

~ four pairs lS+ii? of SO(10) which also carry charge l/4, -l/4 respec- 

tively under the U(l), 

- a pair which carry only U(1) charge fl, and three which are singlets 

under the full gauge group. 

& Fermionic charms 

untwisted: 5x(0000000000) 31,.>,,,. 

v, : 
v, : 
v, : 
v, : 

v,+v, : 
v,+v, : 

vz+vs : 
v,+v, : 
v,tv& : 
v,+v, : 

*(1/2,1/2,1/2,1/2,0.0,0,0,0,0) *(l/2,1/2,-l/2,-1/2,0,0,0,0,0,0) 

*(1/2,1/2,0,0,1/2,1/2,0,0,0,0) *(l/2,1/2,0,0,-l/2,-1/2,0,0,0,0) 

*(1/2,1/2,0,0,0,0,1/2,1/2,0,0) *(1/2,1/2,0,0,0.0,-l/2,-1/2,0,0) 

*(1/2,1/2,0,0,0,0,0,0,1/2,1/2) *:(1/2,1/2,0,0,0,0,0,0,-l/2,-1/2) 

*(0,0,1/2,1/2,1/2.1/2,0,0,0,0) *(0,0,1/2,1/2,-l/2,-1/2,0,0,0,0) 

*(0,0,1/2,1/2,0,0,1/2,1/2,0,0) f(0,0,1/2,1/2,0,0,-l/2,-1/2,0,0) 

*(0,0,1/2,1/2,0,0,0,0,1/2,1/2) *(0,0,1/2,1/2,0,0,0,0,-l/2,-1/2) 

*(0,0,0,0,1/2,1/2,1/2,1/2,0,0) *(0,0,0,0,1/2,1/2,-l/2,-1/2,0,0) 

*(0,0.0,0,1/2,1/2,0,0,1/2,1~2) *(0,0,0,0,1/2,1/2,0,0,-l/2,-1/2) 

*(0,0,0,0,0,0,1/2.1/2,1/2,1/2) *(0,0,0,0,0,0,1/2,1/2.-l/2,-1/2) 

Table 5 

For SO(10) at level two, the 54 and the 45 are the only new irreps which 

can occur as massless matter states other than the irreps which also occur at 

level one (the singlet, 10, 16, and i6). A s WI?S discussed above, a 45 Higgs 

corresponds to a level two Kac-Moody primary with conformal dimension 415, 

and must therefore be a nontrivial element of the discrete algebra. A 54 Higgs 

corresponds to a level two Kac-Moody primary with conformal dimension 1; 

since the full physical vertex operator also has left conformal dimension 1, this 

implies that it must be the identity element under the discrete algebra. It is 

not surprising then that the states of the 54 arise in precisely the same secton 

as the SO(10) gaoge bosom, which are also trivial under the discrete algebra. 

Moreover, if we construct Table 6 listing the sectors and fermionic charges of 

the (scalar) states in the 54, it differs from Table 5 otlry by the states in the 

untwisted sector. 

h Fwmionic chames 

untwisted: 4x(0000000000) ,II>O.O 

~(l,l,~,~,~.~,~,~,~,~) ~(~,~,l,l,~,~,~,~,~,o) 

f(0 ,11,,110 0 0 0 1 1 0 0 0 0) *(o,o,o,o,o,o,l,l,o,o) 

f(OOOOOOOO1l) > 9 I > , , > > 3 

Table 6 

The highest weight states of the (nonchiral) 16’s arise in sectors 3t6 or 

3*6+7, reflecting that fact that with this embedding of SO(10) the highest 

weight of the 16 is given by 

(~,~,~,~,~,f.~,a,~,~, 

There are many variations of Model B which preserve the realization of 

SO( 10) at level two. For example, we can add the following additional basis 

vector: 
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The additional k;j for i>j are chosen to be all zero except for kg,=-1 12, and 

ke.=1/4. 

For this model the N=2 spacetirne supersymmetry of Model B is broken 

to N=l. The full gauge group is given by 

SO(l0) x Sp(6) x SO(5) x SL’(2) x CJ(l) , 

which is again rank 12. The SO(10) IS realized at level two, and the other 

factors at level one. 

In closing this section on examples we should emphasize that our symbolic 

manipulation package makes the construction and analysis of such models quite 

easy. All of the results presented here come directly from the computer printout, 

and were produced in approximately one minute on a NeXT. Anyone who has 

gained sonw familiarity with the modular invariance constraints could produce 

and analyze dozens of variations on Models A and B in a single afternoon. 

5. Aspects of real fermionieation 

5. I lhdevel Couplings 

The tree-level correlation functions of the N=(2,0) superconformal field 

theory are an essential ingredient in extracting the full tree-level superpotential 

of the low-energy effective field theory. Any solution to string theory that 

realizes a higher level current algebra must, if it has a ferrnionic embedding, 

necessarily contain Sony number of real fermion constituents, i.e., Majorana- 

Weyl fermions which cannot be paired into either Ising or Weyl ferrnions in every 

sector of the partition function. The carrelators of a real fermion conformal 

field theory cannot bc abstracted from those of the critical lsing tnodel or of 

free bosom, and thus require an independent analysis. 

In the fcrnlionir construction given hy Kawai, Lewellcn. Schwartz, and 

Tyr (KLST). any three sectors of the partition function allow a pseudo- 

complezificalion: a pairing of thr real fcrmions that is consistent with their 
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boundary conditions in each of the three sectors 127). This propwty of their 

construction is motivated by requiring modular invariance of non-vanishing 

two loop amplitudes in the factorization limit. Conservation of the pseudo- 

U(1) charges associated with such pseudo-complexilications then provides s 

prescripfion for computing arbitrary 3-point and 4.point carrelators involving 

real fermions. However eve” this prescription breaks down for general N-point 

carrelators, N>4. Clearly, it would he useful to have a more complete under- 

standing of real fermion conformal field theories, both ax a consistency check 

on the limits of the validity of the KLST prescription, and with a view towards 

developing direct tree-level methods that can be extended to other cases of 

interest. 

Let us consider a” alternative starting point. For rational conformal field 

theories, such as real fermions, Verlinde’s theorem [54 allows us to make explicit 

contact between the modular transformation properties of the chiral spin struc- 

ture blocks in the one-loop partition function, and the tree-level fusion dgebra 

of the chiral primary field operators. The correspondence works as follows. In 

a rational conformal field theory it is possible to rewrite the one-loop partition 

function in terms of a finite number of holomorphic blocks, xi(r), which are 

the characters of the chiral primary fields, &(z), under the Virasoro algebra (or 

an extension thereof). Using the characten, one can form a suitable basis for 

the action of the modular transformations, S : s--l/r, and T : r*++l, such 

that S and T are realized a~ finite dimensional unitary matrices. It is easy to 

show that if the characters are modular functions the matrices S and T satisfy 

two important consistency conditions: 

(ST)3 = sz = c (5.1) 

Here C is the conjugation matrix that takes each character to its conjugate, and 

satisfies C’=l, the unit matrix. The existence of aconjugation matrix is related 

to the fact that iu the tree-level operator product algebra, every chiral primary 

field operator is associated with R unique conjugate: let [&I, [+f] denote the 
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conlurmal families whose chiral primary fields are 4, and m:, respect.iwly, and 

let [A denote the conformal family of the identity operator. Then 

IhI x Ml = III 3 (5.2) 

defines the chiral primary field operator, @, conjugate to &. Of course an 

operator could he self-conjugate. Verlinde’s theorem is the statement that the 

matrix S, derived in an appropriate basis from the characters, diagonalizes 

(and determines) the tree-level fusion rules. Let the subscript ‘0’ denote the 

conformal family of the identity operator, 1. Note that in a unitary conformal 

field theory the identity is the unique operator with conformal dimension zero. 

Construct 

Nijk = 1 ‘dfk , 

” 
(5.3) 

where the coefficients Nijk are nonnegative integers. The fusion rules are then 

given by 

lb] x ltijl = N&“[h] (5.4) 

The Nij* also give selection rules on the J-point chiral carrelators since 

(‘AbMj(Q)bt(La)) UI Nijk (5.5) 

A single left-moving Majorana-Weyl fermion corresponds to a c~=1/2 con- 

formal field theory. The Virasoro primaries have conform.4 dimension 0 (the 

identity, I), l/2 (the chiral fermion field $(z)), or l/16 (the chiral twist fields). 

In general (see 1651) there may be two distinct chiral twist fields u(z) and /I(Z); 

this is the case if we require the existence of a well-defined chiral fermion num- 

her, i.e. an operator (-l)F” which anticommutes with e(z): 

(C-l,‘i,tL) = 0 (5.6) 

for all modes +/,.. Acting on the Never-Schwarz vacuum IO), o(0) and /I(O) create 

two degenerate Flamond vacua with different fermion nwnber. The Ramond 
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zero mode opwator da. (7&)‘=1/2, takes one Rauoud vacuuu~ into the other. 

This implies the obvious fusion rule 

I4 x 14 = [PI (5.7) 

To apply Verlinde’s theorem, the chir.4 spin structure blocks of the one- 

loop partition function should be rewritten in terms of the four third Virasoro 

characters ~a, x0, ~112. and x,,. Of course the Virasoro characters x-(r) and 

x,(r) are actually equal, since the corresponding primaries have the same left 

conformal dimension. We write [65] 

-G(T) = x0(4 + XI/?(~) 

474 q x0(4 - X1/2(4 

GW= 12.(T) + )3p(‘) 
(5.8) 

-G(r) = fL44 - 2$8(T) I 

where we have introduced the notation ,$.,=~~/a, &=x,/t/i. if we use the 

basis ~0, x~, xLll, x,,, to construct S, then S will not be unitary; this reflects 

the fact that one does not obtain a diagonal modular invariant using all four 

characters. We have adapted Verlinde’s analysis to this case, however here we 

will employ the convenient shortcut of using the modified basis x0, X., xlIz, 

ir. 

Since the Ramond-Ramond block 2: (r) vanishes, it may not seem that its 

modular transformation properties under S and T are meaningful. However it 

is apparent in the KLST formalism that 2: (T) picks up phases under S and 

T, and that these phases are vital to the construction of the partition function 

fur real fermions. In (271 this was understood by appealing to higher loop mod- 

ular invariance: although 2: (7) vanishes, it appears in the factbrization limit ( 

of certain nonvantihing two-loop amplitudes. Here we see that the modular 

transformation properties of 2:(r) are needed to connect the one-loop parti- 

tion function to the tree-level fusion rules. Both arguments may be regarded as 

appealing to the unitarity of the internal rational conformal field theory. To be 
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completely general, we will parametrize the modular transformations of 2: (7) 

by t.wo phases: 

r + -l/r: 2," - 2," 

2; * 2, 

2; + 2; 

2: --t &42: 

+-+r+l: 2," -e-ff2; 

zp+e-tiz," 

2; -e ft2; 

2: -+ ewt2; 

(5.9) 

The pararnrtrrs 4 and 7 are then fixed by combining (5.8) with (5.9) and 

imposing the consistency conditions (5.1). Thus requiring (ST)%? gives 

g=;-9 
3 

(5.10) 

The constraint S’=l has fwo distinct solutioru: 

We thus obtain two possible forms for S acting as a 4x4 unitary matrix 

on the modified basis set xo, XC. xllz, and ir: 

f 
1 1 1 1 

qD=,): SC 1 1 1 -1 -1 
? I -I I -1 I 

\l -1 -1 1/ 

9=;: d(; Ii j 2) 

(5.11) 

Verlinde’s theorem then provides the corresponding tree-level fusion rules: 

4 = 0 : Id x I$1 = PI 

14 x I4 = [PI 

bl x bl = I4 
IPI x IPI = PI 
14 x [PI = M 

Q = 5 : I!4 x [$I = Iq 
(5.12) 

M x 14 = IPI 
I4 x I4 = Ml 
IPI x IPI = I?4 
I4 x [PI = PI 

We will refer to the +O case as the s-type fusion rules, for self-conjugate twist 

fields, and the &n/2 cake M the c-type fusion rules. In the latter fusion algebra 

the twist fields are conjugates of each other. 

Our result is that in auy solution obtained via real fermionization each 

constituent real fermion can be labelled as s-type or c-type, where thii labeling 

denotes the corresponding set of fusion rules. It is important to realize that 

thii should not be regarded u a new result in the conformal field theory of 

free Majorana-Weyl fermions per se, rather it is a new result about the proper 

conformal field theory interpretation of solutions to string theory obtained in 

the fermionic formulation. 

To emphasize this last point, we sketch how to recover the familiar fusion 

rules of the fsing model. The critical Ising model does not require the existence 

ofachiral (-l)F”, only of the non-chiralcombination (-l)F=(-l)F”+F”. Thus 

for the Ising model we need introduce only a single chiral twist field u+(z), where 

u*(z)=(u(z)~~(z))/~. The unitary matrix S is now computed in the new 

basis provided by the four Airal Virrrwro charactrw yo, x0+, s 1,2, nnd xnm 

The result is identical for the s-type nud c-type cases: 1 Jz 
s=’ ( JI 0 -t/z : 2 1 -a 10 

00 02 
1 

(5.13) 
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Clearly o-(z) decouples; it can be consistently set to zero. Application of 

Verlinde’s theorem then gives the fusion rules: 

WI x I4 = PI 
I!4 x I4 = I4 (5.14) 

14 x I4 = PI + NJ1 > 

where the superscript + on d has been dropped. These are the familiar fusion 

rules appearing in, e.g., 1531. 

5.2. Selection Rules 

Given explicit fusion rules for the chiral primaries of the real fermions the 

correlators can be obtained via the conformal bootstrap. We intend to give 

a complete treatment of such computations in future work. A useful means 

of finding selection rules for correlators is to introduce the notion of simple 

currenls (also called bonus currents), discussed for general rational conformal 

field theories in [66][67l. A pl mm e current is defined as any chiral primary #i(z) 

in the chiral operator product algebra such that 

T Nk = 1, for all j. (5.15) 

For example, in the [sing fusion rules (5.14). $(r) is a simple current, but u(z) 

is not. 

In general simple currents are not currents, i.e. they need not have confor- 

mal dimension =l. However associated with each simple current is a discrete 

symmetry, and a corresponding charge which is conserved mod 1 in correla- 

tars. This is easy to demonstrate for the fusion algebras (5.12) obtained above. 

For auy simple current &(z), there must be a positive integer N such that 

[(&)N]=I. N is called the order of the simple current. Thus for example in 

the s-type algebra (5.12), u(z) is a simple current of order 2, while in the c- 

type algebra u(z) is a simple current of order 4. Clearly the chirai primaries of 

any rational fusiou algebra can be decomposed into orbits with respect to each 
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simple current. Thus in the s-type algebra, the orbits with respect to u(z) are 

(l,o), (,I&); for the c-type algebra, there is only one orbit: (l,n,q!~,~r). 

For any simple current &(z), there is a discrete charge Qj assigned to every 

primary bj(r). When the matrix S is symmetric (as in (5.11)), these charges 

are given by the simple expression(671: 

,Z"Qj = 3 
soj 

These charges are conserved mod 1 in correlators. This provides useful 

selection rules for N-point functions involving real fermions. One of these se- 

lection rules is already familiar: e(z) is a simple current with an associated 2, 

charge. This charge is the same for the s and c-type algebras. Conservation 

of this charge gives the selection rule that correlators with an odd number of 

Ramond fields vanish [Ml. 

5.3. Constilency of the KLST Condtruction 

The analysis of the previous section makes an explicit connection between 

the one-loop partition function of real fermions, and the tree-level operator 

algebra of the underlying conformal field theory. This allows us to perform 

some consistency checks on the KLST formulation 1271. We will show that 

for a large class of consistent solutions, the prescription given in 1271 is both 

necessary and sufficient. However we will also derive the simplest ewe where 

the KLST prescription appears to break down. The problem can be traced to 

the assumed modular tranformations of the real fermion spin structure blocks. 

The KLST prescription includes three constraints which apply only to the 

real fermion spin structures in the partition function. These are 1271: 

(i) The total number of real fermions is even. 

(ii) Let 0(1/,, I;) denote the number of overlaps of real fermions:with the Ra- 

mond boundary condition between sectors V, and Vj. Then for all Vi, Vj, 

O(Vi, Vj) must be even. 

(iii) Let O(K,,vj,v~) be the number of overlaps of real fermions with the 

Ramond boundary condition common to three sectors. Then for all K, y. 
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V,, O( Vi, Vj, Vt) must be even. This is referred to as the cubic constraint in 

[27][18](28]. Note that, since the all-Rwnoud basis vector 1’0 is io every model, 

(ii) is actually implied by (iii). By the same token, O(~, V,) even implies that 

the total number of real fermions with the Ramond boundary condition in any 

$ingfe basis vector must be even. 

The KLST construction relies on pseudo-complexification of pairs of real 

fermions in order to define the Fock space upon which the GSO projection op- 

erators act. Pseudo-complexilication means that, in every sector, real fermions 

are sorted -in a sector-dependent way--.- into NS-NS or R-R pairs. Each pair 

is then used to defiue B complex fermion, and the Fock space is constructed as 

if these complex fermions were actual Weyl fernions. The resulting Fock space 

is obviously a subspace of the original Fock space spanned by the reed fermions. 

The KLST construction also relics on the pseudo-complexification of pairs 

of real fermions in order to define the modular transformation properties of 

the chiral spin structure blocks of a single real fermion. The transformation 

properties were assumed to be given (up to a sign) by the “square root” of 

those for a Weyl fermion. Thus 

T - -l/r : 2,” - 2,” 2; - 2; 

2; + 2; 2: - e42: 

74r+l: 2,0-e-“2; 2; + c-Hz,0 
(5.17) 

2; - es2; 2: - 82; 

One immediately notes that this does not agree with the modular trans- 

formation properties of either the s-type or the c-type caes discussed above. 

However in a partitiou functiou of N real fermions, the modular transforrna- 

tions of relevance are those of the real fermion spin structure blocks taken N 

al LI time. Suppose that in a particular sector of the partition fuuctiou, there 

are N,, N, left-moving real fermions with Ramond boundary condition and 

fusion algebra of s, c type, aud N#, NC right-moving real fcrmions with &. 

mend boundary condition and fusion algebra of s, r type. According to the 

trausformation properties uuder S assumed io the KLST prescription (5.17). 
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the corresponding real fcrmion spin structure blocks transform by the overall 

DhCi.5e 
cxpsi(N, + N, -Ii’, - iiJ<) 

4 
(5.18) 

Our analysis in the previous section indicates that the overall phase should be 

exP 
ri( NC - NC) 

2 

Thus consistency between the two prescriptions for the modular transformation 

properties is achieved if and only if 

(N.+&‘c)-(Nc+&‘,)=O mod% (5.20) 

for every sector in the partition function. Since the chiral spin structure blocks 

of right-moving c-type real fermions transform like those of left-moving s-type 

red fermions for the purposes of this argument, we will suppress the left-right 

labeling and write simply 

N. - NC = 0 mod 8. (5.21) 

This is the basic identity required for a8rccment between the assumed modular 

transformation properties in the KLST prescription, and those derived from the 

tree-level fusion rules of the real fermion conformal field theory. 

Our task now is to convert this consistency equation into a list of con- 

straints on the ba& vecfow. i.e., the set of boundary condition vectors which 

span the sectors of the partition function. One obvious consequence of (5.21), 

given that the sector V, occurs in any solution, is that the total number of real 

fermions in the underlying conformal field theory must he even (thus reproduc- 

ing (i) above). In a sector where N.=N, (nof merely mod 8). there are as many 

real ferrnions with Ramond boundary condition and fusion algebra of s-type as 

of c-type, and as many real fermions with Neveu-Schwarz boundary condition 

and fusion algebra of s-type aa of c-type. Thus we have a collection of s-c pairs. 

However a Weyl ferndon with periodic or antiperiodic boundary condition may 

also be regarded as an s-c pair of real fermions: the holomorphic operator alge- 

bra of a Weyl fermion is a subalgebra that obtained from the teusor product 
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of an s-type algebra and a c-type algebra, with only 4 chiral primaries instead 

of the possible 4x4 = 16. Thus in any sector where N,=N, we can perform 

a sector dependent pseudo-completification of the real fermions. This is the 

essence of the KLST prescription for real fermions. 

Let us now suppose that the constraint (5.21) is satisfied by the set of basis 

vectors and derive what additional constraints may follow by requiring (5.21) 

for sectors which are sums of basis vectors. To do this, let R(V, +V,+...+Vk) 

denote the number of real Ramonds in the sector defined by the sum of hasis 

vectors V,+Vz+...+Vk. Then one can easily verify the following identity: 

R(v, + Vz + . . + Vk) = c R(K) - 2x O(v,,v,) 
i<j 

+4 C O(vi,VjvV,)-8 C O(K,VjvVk9&)+... 
i<j<t i<j<kd 

(5.22) 

Applying (5.21) and (5.22) to the sum of any two basis vectors, one finds: 

O.(K,Q) - O,(k&Q) = 0 mod 4, (5.23) 

where 0. and 0, denote the numbers of overlaps of real fermions with Ra- 

mond boundary condition and s-type or c-type fusion algebra, respectively. 

Since O(K,Vj) = O.(&,V;)+O,(V~, Vj), (5.23) implies constraint (ii). How- 

ever (5.23) is a somewhat stronger constraint than (ii). 

Applying (5.21) and (5.22) to the sum of any three basis vectors, one finds: 

O,(Vi,Vj,Vk) - Oc(Vi,Vj,Vh) = 0 mod 2. (5.24) 

This is obviously equivalent to the cubic constraint (iii). 

Applying (5.21) and (5.22) to tl kc sum of any four basis vectors, one finds: 

Os(Vi, Vj, Vk, V,) - Oc(V;,Vj, Vk, VI) = 0 mod 1. (5.25) 

However this is no constraint at all, since 0, and 0, are integers. There is 

therefore no “quartic constraint” for real ferndons, a fact which was first ob- 

tained by KLST (271. Similarly looking at sums of > 4 basis vectors produces 

no additional constraints. 
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5.1. Spin Structures For Red Fermionr 

So far we have shown that the consistency condition (5.21) su&es to de- 

rive the KLST constraints (i)-(“‘) u, wi ou making any reference to higher-loop ‘th 1 

modular invariance. To see whether (5.21) implies any additional requirements 

beyond (i)-(iii), we will consider the general form of sets of basis vectors which 

describe real fermion spin-structures. We will suppress the entries of a basis vec- 

tor which describe Weyl or Ising fermions, writing N dimensional basis vectors, 

where N is the number of real fermions. We can also suppress the distinction 

between left-movers and right-movers for the purposes of this argument. The 

real fermions are of course either periodic or antiperiodic. Furthermore, the 

boundary conditions have been chosen such that there are no global pairs, i.e. 

no two real fermions have identically matched boundary conditions across the 

entire set of basis vectors. Obviously such a pair should have been regarded as 

a single Weyl or Ising fermion and thus (by assumption) suppressed. 

We have already shown that the KLST constraints (i)-(iii) will follow pro- 

vided that (5.21) is satisfied for any b&a vector, and that (5.23) is satisfied 

for any two basis vectors. Thus our strategy will be to construct sets of basis 

vectors which describe real fermions and also satisfy constraints (i)-(iii). The 

set of basis vectors therefore defines a solution to string theory buiIt consistent 

with the KLST prescription. We then need to show that for any such set of 

basis vectors, there exists at least one S-E labeling of the N real fermions such 

that (5.21) and (5.23) are satisfied. It follows that there is an unambiguous 

definition of the tree-level fusion rules for all of the real fermions. In each case 

where at least one s-c labeling exists, the KLST constraints (i)-(iii) are not only 

necessary but also sufficient. 

Consider a set of h4 basis vectors describing the spin structure of N real 

fermions. We will consider these as N dimensional vectors whose entries are 

either 0 (denoting Neveu-Schwarz) or 1 (denoting Ramond). For simplicity we 

may always aSwme that we have a minimof set of basis vectors, in the sense 

that if any one basis vector were to be removed, at least two real fermions would 

become globally paired. We will not bother to write V,, the basis vector with all 
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real fermions in the Ramond ground state, which is always prrsrut. Applying 

coustraints (i)-(iii). we then derive the following results: 

1. For M<3, there are no allowed sets of h&s vectors which contain real 

fermions. 

2. For M74, there is a unique set of basis vectors (module relabeling 

or reshuffling the basis) which contains real fermions. This unique set of four 

produces 16 real fermions: 

v,: (1111111100000000) 

v,: (llllOOOOllllOOoO) 

v,: (1100110011001100) 

v,: (1010101010101010) 

The proof is as follows. In a collection of four vectors as above, each vertical 

column is a 4.digit binary number from 0006 to 1111. To avoid any globd 

pairing, any particular 4.digit binary must appear just once or not at all. Thus 

the m&mum number of real fermions which we can describe with four basis 

vectors is clearly 16. Now consider the column 1111 (the first column above). 

It is easy to see that if 1111 is present, then constraints (i)-(iii) imply that all 

16 columns must be present. On the other hand, if 1111 is absent, then (i)-(iii) 

have no solutions. Thus 16 is also the minimum number of red fermions, and 

this is in fact the unique allowed spin structure. 

3. There are many s-c labelings of the structure of 16 which satisfy (5.21) 

and (5.23). Two examples are 

.wscscBc.wscsc.w 
(5.26) 

ssssccccsssscccc 

4. It is not difficult to show [68] that 16 is the minimum number of real 

fermions for any M. 

5. For M=5, the allowed spin structures describe either 16 or 32 real 

ferwions. For a collection of five basis vectors, each vertical column is a 5.digit 

binary between 00000 and 11111. Thus 32 is the maximum uumher of real 

ferndons which can be produced, and in fact this unique structure of 32 also 

satisfies the constraints (i)-(iii). It can be written as 
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VI: (11~1111100~11111111oo0ooooo) 

v,: (11110000111l00001111000011110@30) 

I$: (11061100110011601100110011001100) 

v,: (1010101010101010101010101010~010) 

v,: (11111111111111110) 

This form makes it clear that the structure of 32 consists of two copies of the 

structure of 16. The fifth basis vector merely breaks the symmetry between the 

two blocks of 16. Thus to get an allowed s-c labeling for the structure of 32, we 

merely take any two of the allowed labelings for the structure of 16. 

To complete the discussion of M=5, we note that the constraints (i)-(iii) 

are all mod 2 constraints. It follows immediately that if there is any spin 

structure satisfying (i)-(“‘) n, and describing N real fermions, then there exists 

another allowed structure which describes 32-N real fermions. This second 

-r “complement”- structure is obtained from the first by simply removing 

the columns which appear in the first structure from tI?e structure of 32 above. 

Thus there are also no aIlowed structures with 16<N< 32. 

6. For M>5, the classification of allowed spin structures for real fermions 

gets more complicated. For example, for M=6, an exhaustive search shows that 

there are allowed structures for 16, 24, 26, 32, 36, 40, 48, and 64 real fermions. 

The structure of 64 is maximal, and may be regarded as four blocks of 16. 

The structures with 36, 40, and 48 real fermions are 64-N complements of 

the structures which give 28, 24, or 16 real fermions. Thus the only essentidly 

new structures are those giving 24” or 28 real fermions. The structure of 24 

may be thought of BS two overlapping blocks of 16. and inherits a number of 

allowed s-c labelings from those of the 16. More generally, although we have 

not completed the classification of all allowed spin structures for M>5, it is 

clear that a large class of the allowed structures are built from the basic block 

of 16, and furthermore that they inherit allowed s-c labelings in an obvious way 

from the component blocks. 

7. The structure of 28 red fermions for h4=6 is more interesting. It can 

he written as 

” This structure of 24 we derived and pointed out to us by Ionsthan Feug, who 

has also found a dilf~rw,t structure of 28 for M=7. 
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This structure can be thought of as three overlapping blocks of 16: two 

of the blocks correspond to the boxes shown above. The third block of 16 

consists of the entries which are in vectors V,, V,, V,, V, and in columns 

{3,4,7,8,11,12,15,16,17,18,23,24,25,26,27,28}. 

The overlaps of the three blocks of 16 are sufficiently complicated that 

it is not clear by inspection whether this structure inherits any allowed s-c 

labelings. However an exhaustive search of all 2” possibilities shows that for 

this structure of 28 there are no s-c lcbelings 8oli&ing (5.21). Thus in this case 

the KLST prescription breaks down: the assumed modular properties (5.18) 

do not agree with (5.19). This does not necessarily mean that there are no 

consistent solutions to string theory with this real fermion spin structure, hut 

that one must modify or go beyond the KLST construction to derive them. 

Our find result is &t the original KLST construction is consistent for 

a large class of spin structures which describe real fermions, but fails in other 

cases. Just as importantly, we have also learned that the allowed spin structures 

for real fermions are quite restricted. This is not surprising from the point of 

view of rational conformal field theory, but it has important consequences for 

model building. 

6. Conclusions 

Our work suggests a number of technical issues involving red fermioniza- 

tion that need further analysis. It also suggests some valuable model building 

strategies that may enable us to eventually go beyond free fermionization. Let 

us hegin with two technical issues which we have not yet touched on. 
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l.Supercun~nl corwlmints. Given a better understanding of the real 

ferrnion conformal field theories it is useful to state more precisely the world- 

sheet supersymmetryconstraints necessary for obtaining Lorentz invariance and 

N=l spacetime supersymmetry. The supercurrent of the (1,0) internal super- 

conformal field theory of central charge c=9 takes the triplet form [14][15], 

TF(~ = if: hti~t+1$~3k+2 , (6.1) 
kl 

where the $:(z), i=3,. .20, are right-moving Majoraua-Weyl fermions, grouped 

into six triplets. 

Following [14] we will consistently choose the internal conformal field theory 

part of the spacetime supersymmetry currents to he embedded in the tensor 

product of the six individual Flamond ground states associated with es, &, &, 

$12, $,s, and 6,s. The related U(1) current is the fermion bilinear 

i(i) = khh + d&l2 + khS!h , (6.2) 

which generates a (2.0) extension of the world-sheet superconformal algebra 

111. Thus, the supercurrent (6.1) can be split into Ti and Ti as follows: 

T;(i) = ‘c ~ltla~-sh-d~at-~ + ~&+I$J’.~+z] Ji,l,’ 
f [tiet-?+‘t&-IdJ6l - ~6t-3!h~+‘~w21 

The U(1) current algebra is an independent constraint on the Hilbert space of 

a consistent solution to string theory beyond the constraints from (1,0) world- 

sheet supersymmetry alone. Thus the superconformal constraints on the basis 

vectors in a model with spacetime supersymmetry are 

rob-3 +*.x-2 + *(IL-l = *a + *ok+’ + re+2 = *oh-2 + v-, + *(IL 

=rek-s +*a+~ + W+Z = rl = rz mod 1 for k = 1,2,3 
(6.4) , 

Here, r; denote the i’th right-moving component of any basis vector. This is 

not the usual form of the triplet constraint stated in the literature (141, but it 

is equivalent in any modular invariant spacetime supersymmetric model. 
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If we restrict ourselves to antiperiodic and periodic boundary conditions 

done for the right-moving fermions, the superconformal conditions (6.4) are 

sufficient to guarantee R consistent solution to string theory, assumiug that the 

spectrum also satisfies the modular invariance constraints. We have seen in the 

previous section that this requires, in addition to (6.4), that we clearly identify 

every right-moving Majorann-Weyl fermion as either being globally paired with 

a right/left-moving Majorarm-WeyI fermion to form a Weyl/Ising fermion. or as 

a member of a valid spin sfruclure block of unpaired (right-moving and/or left- 

moving) red fermions. For this class of solutions, we now have an unambiguous 

prescription to build fully consistent solutions to string theory whose underlying 

conformal field theory description includes t&h unpaired and paired Majorana- 

Weyl fermions. The two examples given in section 4 were particularly simple 

examples of this class, since all of the real fermions were left-movers. We wilI 

develop this class of solutions in future work. In particular, it is possible to 

systematically explore the options for obtaining three generations compatible 

with the gauge symmetry being realized at higher level. 

It is more difficult to implement the supercurrent constraints for general 

models containing a combination of Weyl, Ising, and real fermions. This is be- 

cause we have the possibility of introducing twisted boundary conditions other 

than periodic or antiperiodic for some of the right-moving Weyl fermions. In 

this case the supercurrent constraints require that, up to uu ovemlf bwU change 

of the right-moving fermions, the boundary conditions in the basis vectors {I$) 

describe a set of commuting automorphisms/antiautomorphisms of the super- 

current [15][14]. A detailed d’ rscussion with many examples is given in [69]. 

An explicit prescription analogous to (6.4) for determining whether a given set 

of boundary conditions is valid has not been derived, and thus this class of 

solutions will require further audysis.” 

2. Verificolion. As noted, we have developed a symbolic manipulation pack- 

age (52) to analyze models constructed using real fermionization. The program 

In particular, we believe that world-sheet supersymmetry is violated for the three 

generation model presented in 1251. 
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constructs the massless physical spectrum explicitly, by solving, for every sector, 

the constraint equations which implement the GSO projections. The algorithm 

for solving these equations is fairly involved due to the complicated form of 

the GSO projection operators for real fermions 1271, which include products of 

pseudo-complexified Ramond zero mode operators. 

The results so obtained are of little use unless we can also develop some 

convincing means for verification ~- both of the computer program and of the 

detailed dgorithms which the program implements. Fortunately there are some 

powerful overall physics consistency checks at our disposal. For example, neither 

the program nor the underlying algorithm “knows” about spacetime supersym- 

metry or gauge invariance. Thus a strong physics consistency check is to verify 

that all of the derived states in the massless spectrum assemble into appropriate 

supermultiplets and gauge multiplets. 

However we want to stress that no amount of checking of a single model 

will ever be sufficient for verification of the results. It is essential, in addition, 

to run dozens (or hundreds) of test models with the same program, purposely 

attempting to generate “peculiar” results which signal either hugs in the code 

or problems with the algorithm. These test models utilize spin structures that 

correspond to convoluted fermionic realizations of various gauge groups and/or 

extended spacetime supersymmetry. These solutions may not be of direct phys- 

icd interest but are absolutely essential for gaining confidence in our detailed 

implementation of string consistency. Verification thus becomes the most time- 

consuming aspect of building models with free fermionization. 

Free fernlionization is a useful paradigm for understanding how a successful 

string unification model might work. There are valuable lessons to be gained 

from an in-depth understanding of this very basic tool in string theory. We 

should emphasize t.hat this does not imply that our current methodulugy is 

necessarily the best approach to successful model building. It would he very use- 

ful to obtain the class of solutions we have probed in an alternative framework, 

such as the asymmetric orbifold coustruction, or directly via more sophisticated 

rational conformnl field theory methods. 
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Free fermionization has its limitations. The restriction to constructiug 

solutions which realize only those gauge groups and representations that have a 

fermionic embedding implies that one must he careful in interpreting the results. 

It is essential to have the freedom to vary the underlying constituent conformal 

field theories in order to avoid concluding that a desired phenomenalogical 

outcome is “impossible”. 

On the other hand, real fermionization allows us to sample many interesting 

solutions to string theory in a calculable framework. Realizing the world-sheet 

operator algebras in simpler constituents such as free fields provides important 

technical advantages. Rather than imposing modular invariance directly on 

the tensor product of characters under the necessary operator algebras, such 

as current or coset algebras, we implement the much simpler task of impos- 

ing modular invariance on the tensor product of Virasoro characters of the 

constituents. Furthermore, since the emission vertices of spacetime fields are 

realized in the primary fields of the constituent conformal field theories, their 

correlation functions - which define the couplings in the superpotential are 

given by the tensor product of constituent conformal field theory correlators. 

Since our interest is no1 in exhaustively classifying solutions to string the- 

ory but rather in identifying solutions which offer new physical insight, this 

repackaging of the problem will give us the capability to efficiently access phe- 

nomenologically distinct solutions. Varying the choice of constituent conformal 

field theories will probe distinct embeddings of the low-energy gauge group, new 

possibilities for discrete symmetry groups, and different options for the massless 

spectrum. It should be emphasized that, at the present time, this procedure 

is implemented in detail only for free bosons and fermions. But the tree-level 

methods developed in section 5 appear capable of generalization to a larger 

class of conformal field theories. 

It might seem that, given a sufficiently wide range of constituent confor- 

mal field theories, anything and everything is possible in the spectrum and 

in the superpotential. Thig is a misconception. As we have repeatedly em- 

phasized, and as is evident in any experience with building explicit solutions, 
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string consistency is a very restrictive principle. Slight changes in the underly- 

ing conformal field theory embeddings can have rather drastic consequences for 

the massless spectrum and the superpotential. Given the dictionary between 

spacetime symmetries and world sheet operator algebras, it is probably not 

difficult to construct conformal field theory structures that realize any single 

phenomenological feature, assuming it satisfies the hounds on aIlowed conformal 

dimension and total conformal anomaly [10](38]. But the final step of piecing 

together many features in a consistent solution is extremely delicate. It is this 

property which makes superstring unification so restrictive, hut dso compelling. 
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